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Abstract. The classic game of Battleship involves two players taking turns attempting
to guess the positions of a fleet of vertically or horizontally positioned enemy ships
hidden on a 10× 10 grid. One variant of this game, commonly referred to as Battleship
Solitaire, Bimaru, or Yubotu, considers the game with the inclusion of X-ray data,
represented by knowledge of how many spots are occupied in each row and column in
the enemy board.

This paper considers the Battleship puzzle problem: the problem of reconstructing
an enemy fleet from its X-ray data. We generate non-unique solutions to Battleship
puzzles via certain reflection transformations akin to Ryser interchanges. Furthermore,
we demonstrate that solutions of Battleship puzzles may be reliably obtained by search-
ing for solutions of the associated classical binary discrete tomography problem which
minimize the discrete Laplacian. We reformulate this optimization problem as a QUBO
problem and approximate solutions via a simulated annealer, emphasizing the future
practical applicability of quantum annealers to solving discrete tomography problems
with predefined structure.

1. Introduction

In Battleship, two opposing players secretly position fleets of ships of predetermined
lengths horizontally or vertically on a 10×10 grid. Then each player takes turns guessing
the locations of enemy ships. This paper considers a natural extension of the game
wherein each player possesses X-ray telemetry which gives them knowledge of the row or
column sums of occupied ship positions in their opponent’s board, as in Figure 1. The
problem then becomes how to leverage the X-ray data in order to discern the locations
of the enemy fleet.

The Battleship puzzle problem of determining a full Battleship board from its row
and column sums, possibly with some additional hints about ship positions, is commonly
referred to as Battleship Solitaire. The origin of Battleship Solitaire is attributed to
Jaime Poniachik in 1982. In practice, these puzzles often feature additional information
such as locations of pieces of ships, which force solutions of the battleship puzzle to be
unique. The problem of determining whether a battleship puzzle has a solution, unique
or otherwise, is known to be NP-complete [5]. Here, we focus on the specific case when
we have knowledge of the row and column sums only, so that in general solutions may
not be unique.

1.1. Binary Tomography and QUBO. Inspired by Gritzmann [10], our formulation of
the Battleship puzzle problem in terms of Battleship with X-rays underscores the puzzle’s
relation with tomography, specifically binary tomography. In classical tomography, X-
rays are sent through a solid object at various angles. By measuring the intensity of the
X-ray exiting the object relative to its original intensity, we can quantify the average
density of the object along the X-ray’s trajectory. Tomography then deals with the

Key words and phrases. binary discrete tomography, quantum computing, D-Wave, Battleship, QUBO.

1



2 W. RILEY CASPER AND TAYLOR GRIMES

Figure 1. Row and column sums for a Battleship fleet. In Battleship
with X-rays, X-ray telemetry reveals the density of the opponents fleet in
horizontal and vertical directions, represented by the sum of the occupied
spaces in each row and column in the board.

mathematical process of reconstructing an image of the internal structure of the object
from this density data.

In binary tomography, we consider a discrete version of the above tomography problem.
Our fictitious X-rays probe information about a m×n binary matrix A, telling us the row
and column sums. The original problem in binary tomography is then to construct an
m×n binary matrix with specific row and column sums. Ryser, and independently Gale,
determined necessary and sufficient conditions for the existence of a binary matrix with
specified row or column sums, along with a polynomial time algorithm for constructing a
solution [2, 3, 4]. Furthermore, different solutions are related by a series of transformations
we refer to as Ryser interchanges. See [1] for a comprehensive treatment.

We can interpret a Battleship puzzle as a binary tomography problem, wherein the
locations of ships are represented by ones in a 10×10 binary matrix. However, our problem
differs from the one solved by Ryser in that we must construct solutions corresponding to
placements of a Battleship fleet. Thus it must necessarily feature ships of predetermined
lengths, ie. certain contiguous lines of 1’s. This presents two problems:

(1) there are many solutions of the binary tomography problem which do not represent
fleet positions;

(2) Ryser interchanges break up ships, leading to boards which do not represent fleet
positions.

The second problem is addressed in Section 2, where we create a generalization of Ryser
interchanges which does allow us to preserve the property of representing a Battleship
fleet. In particular this shows that different Battleship fleets can have the same row and
column sums, so that the Battleship puzzle problem does not have a unique solution
unless other constraints are imposed.
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The first problem is more serious. In practice, it makes Ryser’s methods of constructing
a solution infeasable. While Ryser gives us a method of constructing a canonical binary
matrix with the desired row and column sums, this canonical solution is unlikely to
correspond to any possible Battleship fleet position. Furthermore, in a typical case there
may be an enormous amount of binary matrices with the given row and column sums.
Calculating all such solutions and searching among them for those matrices which could
be fleet positions can require large amounts of memory and multiple days of computation
time, and thus is computationally impractical.

To fix this issue, we explore the set U(R,S) of all m × n binary matrices with row
sums R = (r1, . . . , rm) and column sums S = (s1, . . . , sn). The size of the set U(R,S)
can be very large and determining estimates for its size is an interesting combinatorial
question [11, 12]. Via numerical exploration in Section 3, we find that the binary matrices
corresponding to Battleship fleets tend lie close to the minimum of the sum of the squares
of the discrete Laplacian. Intuitively, this is because when we force the solution to consist
of specific contiguous straight lines we impose a lot of structure and minimize the presence
of edges in the binary matrix. Since the discrete Laplacian works as a sharpening mask in
image processing, this corresponds to having minimal Laplacian values. Thus our strategy
is to find those elements in U(R,S) which are near the minimal Laplacian values.

The strategy outlined in the previous paragraph can be reformulated as a binary op-
timization problem. In Section 4, we translate it into a quadratic unconstrained binary
optimization (QUBO) problem, ie. the problem of finding a binary vector ~x which mini-
mizes ~xTQ~x for some fixed matrix Q. We may choose Q such that values ~x minimizing
~xTQ~x correpond precisely to solutions of the discrete tomography problem which min-
imize the value of the sum of the squares of the discrete Laplacian. In Section 5, we
approximate solutions of this QUBO problem both with standard methods and using
a simulated annealer. We demonstrate that the vast majority of randomly generated
Battleship puzzle problems may be rapidly solved via both methods.

1.2. Quantum annealing and Ising models. A quantum annealer is a type of quan-
tum computer, a computer which uses quantum phenomena such as entanglement and
tunneling to perform computations. Specifically, a collection of qubits are arranged in
a particular lattice. Each qubit has two possible observable quantum states, spin up
|+ 1〉 and spin down | − 1〉, and at any particular timie is represented by a wave function
ψ = a|+ 1〉+ b| − 1〉 where a, b ∈ C are complex numbers with |a|2 and |b|2 representing
the probabilities of being spin up and spin down, respectively (so that |a|2 + |b|2 = 1).
In the presence of a magnetic field, the qubits will tend to align in various directions, in
accordance with a potential energy defined by

E(~x) = −~xTJ~x−
n∑

j=1

βjxj

for some n×n matrix J and some constants β1, . . . , βn, where n is the number of qubits.
Here ~x is a vector whose entries are ±1, corresponding to the direction of the spin of
each qubit. This is referred to as an Ising model. By carefully choosing the magnetic
field experienced by the qubits inside a quantum annealer, the energy in a quantum
annealer can be made to resemble any desired values of J and β1, . . . , βn, though with
some constraints based on the network topology of the qubits, the number of qubits, and
the presence of noise in the system.

The Ising problem is the problem of finding ~x ∈ {±1}n minimizing the energy E(~x) in
the Ising model. Note that one may easily convert between Ising problems and QUBO
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problems so that both problems are equivalent. In general such problems are NP-complete
and difficult to solve explicitly, though many standard methods of approximating solutions
exist. A quantum annealer solves an Ising (or QUBO) problem using physics rather than
mathematics. Starting with each qubit in a supercooled state and in the presence of a
uniform magnetic field, the whole system will be arranged in a global minimum energy
state. Then by gradually evolving the background magnetic field, we can move from a
simple equation for the energy to the energy of the quantum system corresponding to a
particular Ising problem. When this process is performed slowly enough, each qubit will
have a high probability of remaining at or near the minimum energy. Thus by observing
the quantum system we obtain good approximations to the solution of the Ising problem.
By leveraging quantum phenomena, these approximate solutions are anticipated to be
obtained far faster than by classical approaches, especially for large problem sizes.

Presently, quantum annealers are very constrained in terms of the number of qubits.
The largest, at the time of this writing, is manufactured by D-Wave Systems and features
around 5000 qubits – a slim number when compared to the gigabytes avalable from RAM
cards on classical computing systems available to the average consumer. However, in
the future we anticipate the existence of quantum annealers with enormous amounts of
qubits. Thus encoding complicated mathematical problems like the Battleship puzzle
problem is a key step in the path of leveraging this future computing resource. We used
the simulated annealer dwave-neal [15] to estimate the performance of our algorithm on
an actual quantum annealer. For a comparison of simulated annealing with quantum
annealing on the D-Wave, see [14].

2. Stealthy Fleet Positions

In a competitive game of Battleship with X-rays, a player would naturally wish to
choose positions for their ships where the X-ray data, the row and column sums, won’t
give the game away. In other words, we would seek stealthy fleet positions, by which
we mean Battleship fleets where the row and column sums are shared between many
different fleets. However, it is not obvious at all whether stealthy fleet positions exist or
the row or column sums determine the fleet positions uniquely.

Perhaps surprisingly, examples of stealthy fleet positions are in great supply. For
examples, see Figure 2 which describes a relationship between two different fleet positions
with the same X-ray data, and Figure 4 which gives examples of nine different fleets with
the same row and column sums. Thus as in the case of binary tomography, the row and
column sums are insufficient to specify the precise position of the fleet. The source of this
lack of uniqueness in the tomography situation is the existence of Ryser interchanges.

Definition 2.1. Let A be a m × n binary matrix and suppose that 1 ≤ a, c ≤ m and
1 ≤ b, d ≤ n satisfy A(a, b) = 1, A(c, d) = 1, A(c, b) = 0 and A(a, d) = 0. The (a, b, c, d)
Ryser interchange of A is an m× n binary matrix B whose values are given by

B(j, k) =

{
1−A(j, k), (j, k) = (a, b), (a, d), (c, b), or (c, d)

A(j, k), otherwise.

As one can readily see, a Ryser interchange of a matrix A preserves the values of the row
and column sums. Furthermore, Ryser proved any binary matrix whose row and column
sums are the same as those of A may be obtained via a sequence of Ryser interchanges.
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Figure 2. Two different Battleship fleets with the same row and column
sums. The fleet on the right is obtained by the one on the left by reflecting
the indicated submatrix horizontally across the dashed vertical line.

2.1. Generalizing Ryser interchanges. In our situation, the problem is complicated
by the fact that Ryser interchanges can break up ships, returning binary matrices whose
entries cannot possibly represent the positions of a Battleship fleet. To combat this issue,
we introduce a generalization of Ryser interchanges which preserve both ships and the
row and column sum data. To start, let Jm represent the m ×m anti-diagonal identity
and recall that JmA flips the rows of A up-to-down. Likewise AJn flips the columns of A
left-to-right.

Definition 2.2. Let A be a m × n binary matrix and let Ã be a p × q submatrix of A.

The submatrix Ã is said to be column sum-symmetric if the column sums of Ã and

JpÃJq are the same. Likewise, Ã is said to be row sum-symmetric if the row sums of Ã

and JpÃJq are the same. The horizontal subreflection of Ã in A is the m×n matrix

B which is the same as A, but with the submatrix Ã flipped left-to-right. Likewise the

vertical subreflection of Ã in A is the matrix C which is the same as A, but with the

submatrix Ã flipped up-to-down.

With these definitions in mind, it is straightforward to prove the following proposition.

Proposition 2.3. Let A be a m × n binary matrix and let Ã be a p × q submatrix of

A. If Ã is column sum-symmetric, then the horizontal subreflection of Ã in A has the

same row and column sums as A. Likewise, if Ã is row sum-symmetric, then the vertical

subreflection of Ã in A has the same row and column sums as A.

Now let’s restrict ourselves to the situation of a 10×10 binary matrix A. A Battleship
fleet is composed of 5 ships: the destroyer, submarine, cruiser, battleship, and carrier
whose lengths are 2, 3, 3, 4, and 5, respectively.

Definition 2.4. Let A be a 10×10 binary matrix. A fleet realization for A is a choice
of the positions of the five ships in the fleet such that the nonzero entries of A coincide
with the positions occupied by the ships.
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It is worth noting that in order for A to have a fleet realization, it is necessary but
not sufficient for it to have precisely 17 nonzero entries. Therefore the sum of the row
sums and the sum of the column sums must both be 17. Moreover, it is possible for
A to have multiple fleet realizations, for example, when the destroyer and cruiser are
found end-to-end, we will have a decision to make about which sequence of adjacent ones
represents the carrier and which represents the destroyer-cruiser combination.

Definition 2.5. Let A be a 10× 10 binary matrix with at least one fleet realization, and

let Ã be a p× q submatrix. We say Ã is non-bisecting if there exists at least one fleet

realization satisfying the property that any ship whose position overlaps with Ã must lie

entirely within Ã.

Thus to find a new fleet position whose row and column sums are the same as the
old one, we can search for a non-bisecting column-sum symmetric or row-sum symmetric

submatrix Ã of A and perform either a horizontal or vertical subreflection. For example
the different fleet positions giving rise to the same row and column sums in Figure 2 are
connected by a horizontal subreflection.

3. Laplace-minimimizing binary matrices

In this section we describe the discrete Laplacian operator and observe numerically that
when we arrange binary matrices with discrete row and column sums by the magnitude
of the square of their discrete Laplacians, we tend to find legitimate Battleship fleet
positions among the minimal values. Thus to find a Battleship fleet position for a certain
set of row or column sums we are motivated to search for those matrices which minimize
or nearly minimize the square of the Laplacian.

3.1. Discrete Laplacians. Consider an m×n rectangular sublattice D = {1, . . . ,m}×
{1, . . . , n} ⊆ Z × Z. The discrete Laplacian of a function f : D → R is the function
∆f : D → R defined by

−∆f(j, k) = 4f(j, k)− f(j − 1, k)− f(j, k − 1)− f(j + 1, k)− f(j, k + 1),

where here we interpret f(j, k) = 0 for (j, k) ∈ Z2\D, imposing a Dirichlet-type condition
on the value of f outside the domain D. Since an m × n matrix A may be interpreted
readily as function via f(j, k) = Ajk, we are naturally able to define the Laplacian of a
matrix A, which as an abuse of notation we denote by ∆A.

The discrete Laplacian above arises commonly in finite-difference and finite-element
numerical methods for partial differential equations. It also arises naturally in image
processing, specifically in the context of edge-detection where it plays the role of a simple
digital sharpening filter. The sum of the squares of the Laplacian is the same as the
`2-norm squared of the associated vector.

‖∆f‖2 =
∑
j,k

[4f(j, k)− f(j − 1, k)− f(j, k − 1)− f(j + 1, k)− f(j, k + 1)]2 .

It’s worth noting that in the continuous case multivariate functions which minimize the
squares of their Laplacians and satisfy some prescribed boundary behavior were studied
in [6], where they were shown to be biharmonic functions (ie. ∆2f = 0) away from interior
boundaries of their domains. We could imagine a similar characterization in the discrete
situation, except for the complications that (1) we are interested in binary functions, and
(2) our constraint is a condition on the sum of horizontal and vertical projections and
is nonlocal in comparison to prescribing certain boundary values as done in [6]. Note
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that for us, the boundary values are Dirichlet in the sence that f(j, k) is zero outside the
prescribed domain D.

3.2. Discrete Laplacians of Battleship Fleets. In this subsection we consider the
values of the sums of squares of Laplacians for functions with prescribed row and column
sums. As we demonstrate, those solutions minimizing the value of this sum tend to be
more ordered, and more often have Battleship fleet realizations. To begin, consider the
following example.

Figure 3. The 2 × 5 binary matrices whose column sums are all 1 and
whose row sums are 2 and 3, respectively. The sum of the squares of the
Laplacian of the matrix is indicated above each arrangement. The poten-
tial Battleship fleet positions correspond with the smallest sum values.

Example 3.1. Consider the placement of a 2×1 destroyer and a 3×1 submarine inside a
2×5 grid such that the column sums are all 1 and the row sums are 2 and 3, respectively.
There are ten such binary matrices with these specific row and column sums and their
values along with the sums of the squares of their Laplacians can be found in Figure 3
below. The arrangements with the smallest Laplacian squared sums correspond to the
actual possible fleet positions.

What we observe in the simpler 2× 5 case also carries over to the full board. In fact,
what we find by means of direct numercal experimentation is that generically the binary
matrices with fleet realizations typically have minimal or near-minimal values for the
sums of the squares of their Laplacians. Intuitively this makes sense because
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• straight lines of ones in the binary matrix tend to have smaller Laplacians than
shapes with many turns
• more connected fleet positions tend to have smaller Laplacians than fleet positions

with many connected components, particularly those with stranded single entries

As a particular case, we explore the set of Battleship fleets featured in Figure 4. Each

Figure 4. Fleets for a particular row and column sum which are four
Ryser interchanges from the starting fleet. The starting fleet is featured
in the upper left corner.

fleet has the same row and column sums. We use a computer to determine the set
U(R,C) of all binary matrices with these row and column sums. The `2 norm squared
of the entries of U(R,C) form a Gaussian distribution with mean value µ = 248.154 and
standard deviation σ = 21.935, as indicated in Figure 5. The squared norm values of the
binary matrices corresponding to the fleet positions are indicated by the vertical dashed
lines. Notably all lie at the far left part of the distribution, at or near the minimum value
and more than two standard deviations from the mean.

4. Reconstructing Fleet Positions

In this section, we describe our method of reconstructing fleet positions from knowledge
of the row and column sums. Our strategy is to reformulate the problem as a QUBO
problem of finding the 10×10 binary matrices with the correct row or column sums whose
values are near the minimum of the square of the two-dimensional discrete laplacian.
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Figure 5. Histogram of the sums of squares of Laplacians for all binary
matrices which are four Ryser interchanges away from the starting fleet
along with a curve fit to a normalized Gaussian distribution. The binary
matrices with fleet realizations are indicated by the dashed vertical lines
and lie to the extreme left of the distribution around 3σ from µ.

4.1. Converting to QUBO. Let Q be an n × n matrix, L an m × n matrix and ~b

length m vector satisfying L~x = ~b for some ~x ∈ {0, 1}n. Consider the linearly constrained

binary optimization problem of minimizing ~xTQ~x subject to the constraint that L~x = ~b.
It turns out that such a constrained problem can be converted into a QUBO problem in
a standard way.

Theorem 4.1. Let Q and L be as above and define

Qlin = LTL− 2diag(LT~b).

For ε small enough, solutions of the QUBO problem

(1) minimize ~xT (Qlin + εQ)~x, ~x ∈ {0, 1}n

will also be solutions of the optimization problem with a linear constrant

(2) minimize ~xTQ~x, ~x ∈ {0, 1}n, L~x = ~b

Proof. First note that

~xTLTL~x− 2~xTLT~b+~bT~b = (L~x− b)T (L~x−~b) ≥ 0

with equality if and only if L~x = ~b. Since ~x is binary, ~xT ~LT~b = ~xTdiag(~LT~b)~x. Thus the

binary solutions of L~x = ~b coincide with solutions of the optimization problem

minimize ~xTQlin~x, ~x ∈ {0, 1}n.

Thus if r is the spectral gap of Qlin and R is the spectral radius of Q, then for L~x 6= ~b
and ε = r/10R we see that the minimum solution of

minimize ~xT (Qlin + εQ)~x, ~x ∈ {0, 1}n
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will necessarily satisfy ~xTQlin~x = 0 and thus will be a solution of the linearly constrained
problem above. �

Thus to solve the problem of finding binary matrices with certain row and column sums
which minimize the Laplacian, we can convert the associated linear system to a QUBO
problem with matrix Qlin, construct a matrix Qlap encoding the Laplacian and solve the
QUBO problem for the matrix

Q = Qlin + εQlap

for sufficienty small ε. We discuss this in detail in the next subsection.

4.2. Laplacian-minimizing solutions. To calculate the Laplacian-minimizing 10× 10
binary matrices A with prescribed row and column sums, we start by expressing A as
a binary vector ~x of length 100 whose entries are x10(j−1)+k = Ajk with 1 ≤ j, k ≤ 10.
Taking the row and column sums of A is then equivalent to multiplying ~x by a 20× 100
matrix L whose entries are

Lm,10(j−1)+k =


1, 1 ≤ m ≤ 10 and n = k

1, 11 ≤ m ≤ 20 and j = m− 10

0, otherwise

, 1 ≤ j, k ≤ 10

In particular, if ~r and ~c are column vectors whose entries are the row and column sums

of A (in order from top to bottom or left to right) then L~x =
(
~r
~c

)
.

The discrete Laplacian of a matrix A is a new matrix ∆A whose size is the same as A
and whose entries are

(∆A)j,k = 4Aj,k −Aj−1,k −Aj+1,k −Aj,k−1 −Aj,k+1

where entries Am,n outside the bounds of 1, . . . , 10 are taken to be zero. This corresponds
to the multiplication of ~x by a 100 × 100 matrix, which as an abuse of notation we also
denote by ∆:

∆10(s−1)+t,10(j−1)+k =


4, s = j and t = k

−1, s = j and |t− k| = 1

−1, t = k and |s− j| = 1

0, otherwise

, 1 ≤ j, k ≤ 10.

In this form, the sum of the squares of the Laplacian of a matrix A is equal to the product
~xT (∆T∆)~x where ~x is the vector version of A.

Thus the search for binary matrices A with presecribed row sums and column sums
given by R = [r1 . . . r10] and C = [c1 . . . c10], respectively, which minimize the square-
sum of the discrete Laplacian is equivalent to the QUBO problem

(3) minimize ~xT (Qlin + εQlap)~x, x ∈ {0, 1}100

where here Qlap = ∆T∆ and

Qlin = LTL− 2diag([r1 . . . r10 c1 . . . c10]L).

In practice the value of ε is a parameter that we can toggle to potentially improve
performance. The results of our numerical experiements below were obtained using a
value of ε = 0.005.
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4.3. Numerical Experiments. In this subsection we demonstrate the efficacy of our
algorithm for recovering Battleship fleet positions with prescribed row and column sums.

We explore the ability of our QUBO reformulation to solve Battleship puzzles by
leveraging two different QUBO solvers: a classical tabu solver and a simulated annealer.
Starting with a randomly generated Battleship fleet, we construct the QUBO problem
associated to the given row and column sums, as described in the previous section. Then
we try to reconstruct a fleet with the same row and column sums using one of these
QUBO solvers. Note that we are not interested in whether or not we recover the specific
Battleship fleet we started with, since in practice our generalized Ryser interchanges allow
us to quickly move from a recovered fleet position to the original one. As shown in Figure
6 below, both algorithms are able to successfully reconstruct a Battleship fleet position
with the desired row and column sums for over 90% of the randomly generated fleets.

Figure 6. Performance of tabu search versus number of iterations on
reconstructing randomly generated fleets from their row and column sums.
For ≥ 200 iterations, upwards of 92% of randomly generated fleets are able
to be reconstructed via this search method.

4.4. Numerical methods. To investigate the practicality of our method of reconstruct-
ing fleet positions via solving QUBO problems, we used two common metaheuristic solving
methods: tabu and simulated annealing. The tabu search method approximates a solu-
tion of the QUBO problem of minimizing the quadratic potential energy E(~x) = ~xTQ~x
by iteratively updating an approximate solution and then moving to the adjacent vector
with lowest potential energy, excluding a certain list of tabu or forbidden states. After
many iterations, the presence of a large set of forbidden states may cause iterations to
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increase rather than decrease the potential energy, allowing the algorithm to escape local
minima in the potential energy and more successfully obtain global minima. For details
and applications, see [8, 9].

We used simulated annealing as a substitute for an actual quantum annealer, in order
to get a rough estimate of how solvable our system would be on a quantum computer. A
simulated annealer works by starting with an initial binary vector ~x and then jumping
to a random neighboring vector which is either of lower energy or potentially of higher
energy but with a probability which decreases based on the iteration. For an introductory
account, see [16].

For our work, we use the tabu search algorithm implemented by the QBSolv library
in Python [7], which is based on a multistart tabu search method described in [13] using
randomly generated initial states. The main parameter we adjust in this algorithm is the
number of times we restart the search algorithm using a different randomly generated
initial state. The algorithm then returns a list of the minimum energy states found
after each restart, which is typically much smaller than the number of restarts do to the
presence of duplicates. We also used the simulated annealing python library dwave-neal
available from D-Wave Systems [15], where the main adjustment parameter is the number
of reads, with each read representing a separate run of the simulated annealing algorithm
from a different starting position. We consider a reconstruction to be successful if one of
the fleets returned has a Battleship fleet realization. As shown in Figure 6, we are able
to obtain a Battleship fleet with the desired row and column sums over 92% of the time
for randomly generated Battleship fleets, as long as we use 1000 algorithm restarts in
the tabu search algorithm. The behavior of the sumulated annealer is similarly successful
and compares well with the tabu algorithm as long as we use 10000 algorithm reads.

5. Summary

In this paper, we considered the Battleship puzzle problem from the point of view of
discrete tomography and quantum computing. We demonstrated the existence of different
battleship fleets with the same discrete tomographic data and showed how to create new
fleets with identical tomographic data from old ones via generalized Ryser interchanges.
We demonstrated empirically that Battleship fleets tend to have lower values for the norm-
squared of their Laplacians, compared to other discrete binary matrices with the same
row and column sums. Using this, we constructed a QUBO-based algorithm for recon-
structing Battleship fleets from their row and column sum data. Lastly, we demonstrated
the success of this algorithm using both tabu-based and simulated annealing search al-
gorithms. The latter provides evidence that similar sort of Laplacian-minimizing QUBO
problems could be successfully solved on a quantum annealer.
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